

KTA Series Heatless Desiccant Air Dryers

ENGINEERING YOUR SUCCESS.

KTA Series Heatless Desiccant Air Dryers

Parker Zander KTA Series Heatless Desiccant Air Dryers remove water vapor from compressed air through a process known as Pressure Swing Adsorption. A pressure dew point of -40°F (-40°C) is attained by directing the flow of saturated compressed air over a bed of desiccant.

The most commonly used desiccant is activated alumina, a spherical shaped, hygroscopic material, selected for its consistent size, shape and extreme surface to mass ratio. This physically tough and chemically inert material is contained in two separate but identical pressure vessels commonly referred to as "dual" or "twin" towers.

As the saturated compressed air flows up through the "on-line" tower, its moisture content adheres to the surface of the desiccant. The dry compressed air is then discharged from the chamber into the distribution system. An Allen Bradley[®] PLC controller automatically cycles the flow of compressed air between the towers. While the "on-line" tower is drying, the "off-line" tower is regenerating. Regeneration, sometimes referred to as purging, is the process by which moisture accumulated during the "on-line" cycle is stripped away during the "off-line" cycle. As dry low pressure purge air flows gently through the regenerating bed, it attracts the moisture that had accumulated on the surface of the desiccant during the drying cycle and exhausts it to the atmosphere.

To protect the desiccant bed from excess liquid, all Parker Zander KTA Series Heatless Air Dryers are designed to work with the natural pull of gravity. By directing the saturated air into the bottom of the "on-line" tower and flowing up through the bed, liquid condensate caused by system upset, is kept away from the desiccant and remains at the bottom of the tower where it can be easily exhausted during the regeneration cycle. Counter flow purging ensures optimum performance by keeping the driest desiccant at the discharge end of the dryer.

Heatless dryers in general are the most reliable and least expensive of all desiccant type dryers. Parker Zander KTA Series Heatless Desiccant Air Dryers are more energy efficient than competitors thanks to standard features such as: variable cycle control, CycleLoc^{™,} and regulated purge flow.

Controllers

Basic Controller Features:

- Allen-Bradley[®] PLC
- Nema 4X enclosure
- LCD user interface
- Four line digital display features:
 - Tower drying indication
 - Tower regenerating indication
 - Run status
 - Time remaining in cycle
- Selectable cycle settings
- Programmable drain timer (drain on, time and test)
- Compressor demand via external dry contact (CycleLoc[™])
- Power ON/OFF switch
- Step-through regeneration for maintenance

Basic Controller (Standard on Models KTA10 - KTA800)

LED Din Connectors

Features and Benefits:

- Easy to maintain and service
- Valve may be serviced without opening electrical enclosure
- No hard wiring required
- Visual indication of valve activation
- Valve labeling

Advanced Controller Features:

- Allen-Bradley $^{\mathbb{R}}$ PLC
- Ecotronic Energy Demand System
- Nema 4X enclosure
- 3.5" LCD user interface
- Dew point sensor input (-148 to 68°F)
- Optional 4-20 mA output for remotely monitoring dew point
- Tower pressure sensors
- Inlet pressure and temperature sensors
- Compressor demand via external dry contact (CycleLoc™)
- Modbus/TCP communications via standard ethernet port
- Modbus RTU communications via optional RS232/485 port (Using external gateway device)
- SD card slot for accessing historical data and alarm information
- Selectable cycle settings
- Programmable drain timer (drain on, time and test)
- User selectable alarms with common alarm relay
 - High inlet temperature
 - Low inlet pressure
 - Tower failed to blow down (switch failure)
 - Tower failed to pressurize
 - High dew point
 - Sensor failure for all sensors
- Filter maintenance & alarm
- Clogged muffler maintenance and alarm
- Power ON/OFF switch
- Alarm log stores most recent alarms
- Flashes green when in energy savings mode
- Flashes red when an alarm is present
- Dry contact for common alarm

Advanced Controller (Standard on Models KTA1000 - KTA6000 or KTA10 - KTA800 with Ecotronic Option)

Ecotronic Energy Management System

Energy savings of up to 80% can be achieved with the proven Ecotronic energy management system.

Regeneration requirements are dependent on flow, pressure and temperature. The Ecotronic system allows the cost of drying compressed air to be matched exactly to your plant conditions.

Ecotronic controls the drying cycle by continuously reacting to the loading under which the dryer is operating and minimizes the energy input required.

As dryers rarely operate at full rated capacity all of the time (eg. during shift work and periods of low demand), this energy management system can provide considerable savings.

Ecotronic standard on models KTA 1000 - KTA 6000.

The Advanced Controller is designed to accommodate Parker Zander's Ecotronic Energy Management System. Flashes green when in energy saving mode.

Valves

Features and Benefits:

KTA10 - KTA55	KTA75 - KTA800	KTA1000 & Larger			
CERAM valve	High performance	High performance			
 4-way valve 	poppet valve	butterny valve			
Long life	 Stainless steel body 	Non-lubricated			
 Low sensitivity to air 	Stainless steel internals	Carbon steel body			
quality changes	PTFE seal	Stainless steel internals			
Low friction switching, low	• Air activated, spring return	RTFE seat			
wear of valve/seal assembly	Visual position indicator	Double offset stem and disc			
• 5 year valve warranty	on exhaust valves	design for reduced seatwear			
	ANSI Class VI shutoff	and zero leakage			
	Long service life	Repair kits available			
	Repair kits available	• 5 year valve warranty			
	• 5 year valve warranty				

Complete Air Treatment System

Without proper filtration, desiccant air dryers will not work. Desiccant dryers are designed to adsorb vapor from compressed air they are not designed for liquid. When liquid, especially oil, is allowed to enter the desiccant chamber, it coats the desiccant material preventing any further adsorption. Oil coated desiccant can not be regenerated, and must be replaced.

The coalescing pre-filter is installed at the dryer inlet. It protects the dryer by removing liquids and reducing the contamination level of the compressed air. A differential pressure gauge is provided to determine element condition. An automatic float drain is provided on systems 10 through 6000 scfm to ensure proper drainage.

To protect downstream equipment from desiccant dust, a particulate after-filter is installed at the dryer discharge. The after-filter element is designed to remove solid particulates from compressed air. The hybrid pleated filter media provides high dirt retention, low pressure drop, and long element life. A differential pressure gauge is provided to determine element condition.

In-line Filter (KTA10 - KTA1000)

Package Schematic

Dryei

Package "B" (Standard KTA10 - KTA800) Includes dryer with factory installed (optional KTA1000 and larger) pre-filter and after-filter with system bypass.

Package "F" (Standard KTA1000 & Larger) Includes dryer with pre-filter and after-filter shipped loose.

Package "D" (Optional) Includes dryer with factory installed dual selectable pre and after-filters with system bypass.

Compressed Air Quality to ISO 8573.1 the industry standard method for specifying compressed air cleanliness

The ISO 8573.1 international standard for compressed air quality provides a simple system of classification for the three main contaminants present in any compressed air system - Dirt, Water, and Oil. To specify the quality class required for a particular application, simply list the class for each contaminant.

		Dirt	Water	Oil	
CLASS	Maximum ı	number of partic	Pressure Dow point	(incl.	
	0.1 - 0.5 micron	0.5 - 1 micron	1 - 5 micron	°F (°C)	mg/m ³
1	100	1	0	-94 (-70)(-70°C)	0.01
2	100,000	1,000	10	-40 (-40) (-40°C)	0.1
3	-	10,000	500	-4 (-20)	1
4	-	-	1,000	37.4 (3)	5
5	-	-	20,000	44.6 (7)	-
6	-	-	-	50 (10)	-

Engineering Data Specifications

Product Selection

Package	Model	Flowrate @ 100 psig (scfm)	Approx Purge (scfm)	Standard Pa	ckaged Dimension	ons ins (mm)	Weight		Dryer Air
				Height (H)	Width (W)	Depth (D)	lbs	kg	In/Out
	KTA10	10	2	46	22	25	108	50	3/8" NPT
	KTA15	15	2	46	22	25	112	51	3/8" NPT
	KTA25	25	4	64	22	25	156	71	1/2" NPT
	KTA40	40	6	49	22	25	190	86	1/2" NPT
	KTA55	55	9	65	22	31	230	104	3/4" NPT
	KTA75	75	11	81	35	28	384	174	3/4" NPT
	KTA100	100	15	80	37	30	468	212	1" NPT
В	KTA130	130	20	80	37	30	496	225	1" NPT
	KTA200	200	30	82	42	37	692	314	1 1/2" NPT
	KTA250	250	38	82	45	37	776	352	1 1/2" NPT
	KTA300	300	45	82	45	37	796	361	1 1/2" NPT
	KTA400	400	60	84	48	41	1626	737	2" NPT
	KTA500	500	75	84	50	45	1735	788	2" NPT
	KTA600	600	90	84	53	48	1740	789	2" NPT
	KTA800	800	120	85	55	48	2120	961	2" NPT
	KTA1000	1000	150	93	74	41	3676	1667	3" Flg
	KTA1200	1200	180	104	74	41	4605	2089	3" Flg
	KTA1500	1500	225	115	78	48	4985	2261	3" Flg
	KTA2000	2000	300	97	78	60	5206	2361	4" Flg
F	KTA2600	2600	390	111	108	66	7600	3447	4" Flg
	KTA3000	3000	450	111	108	66	8300	3765	6" Flg
	KTA4000	4000	600	CF	CF	CF	CF	CF	6" Flg
	KTA5000	5000	750	CF	CF	CF	CF	CF	6" Flg
	KTA6000	6000	900	CF	CF	CF	CF	CF	6" Flg

*Flowrates at the following climatic conditions - Inlet Temperature: 100°F (38°C), Inlet Pressure: 100 psig (7 bar g). Dimensions and weight shown on Models KTA10—KTA800 includes dryer with factory installed pre and after filter with system bypass.

Dimensions and weight shown on Models KTA1000-KTA6000 dryer only (filters are shipped loose).

Description	Flow Range @ 100 psi g (7 bar g)	Dew point	Design Pressure	Max Operating Pressure	Min Operating Pressure	Max Inlet Temp	Min Inlet Temp	Controls	Electrical Supply
KTA10 -	10 – 1500	-40°F (-40°C)	150 psig	150 psig	80 psig	120°F	50°F	Allen Bradley [®]	120V/1Ph/60Hz
KTA1500	scfm	Standard	(10.3 barg)	(10.3 barg)	(5.5 barg)	(49°C)	(10°C)	PLC	
KTA2000 -	2000 – 6000	-40°F (-40°C)	150 psig	135 psig	80 psig	120°F	50°F	Allen Bradley [®]	120V/1Ph/60Hz
KTA6000	scfm	Standard	(10.3 barg)	(9.3 barg)	(5.5 barg)	(49°C)	(10°C)	PLC	

Notes:

1. Above information should be used as a guideline. Flows are at 100 psig inlet pressure, 100°F inlet temperature and 100°F ambient temperature.

For specific applications, please consult Parker Zander Technical Services. 2. Weight includes desiccant (shipped loose Models KTA2000 and up). 3. For sizing at other temperatures and pressures, please consult factory.

4. Dryer with basic controller FLA is 2 Amp, Advanced controller FLA is 3 Amp 5. Pressure relief valve variance +/- 10%.

Correction Factors

To obtain dryer capacity at new conditions, multiply nominal capacity x C1 x C2.

Temperature Correction Factor								
Maximum Inlet Temperature (C1)	°F	90	95	100	105	110	115	120
	°C	32	35	38	41	43	46	49
	CF	1.17	1.15	1.00	.87	.76	.66	.58
Pressure Correction Factor								
Minimum Inlet Pressure (C2)	psig	80	90	100	110	120	130	
	barg	5.5	6.2	6.9	7.6	8.3	9.0	
	CF	.83	.91	1.00	1.09	1.17	1.26	

Standard Equipment

Allen Bradley[®] PLC

- 4 line display
- NEMA 4X enclosure
- Selectable cycles

Switching Valves

 Five year switching valve warranty from manufacturer's defects (see warranty policy)

Factory Installed Filtration (KTA10 - KTA800)

- Single point connection for system integrity
- Differential pressure gauges for element condition
- Filter drains

Regulated Purge (KTA75 & larger)

- Factory set
- Optimum purge regardless of operating pressure
- Repressurization circuit

Additional Features

- Separate tower pressure gauges
- OSHA approved mufflers with safety relief
- ASME/CRN vessels (KTA100 and larger)
- Desiccant fill and drain ports
- Safety relief valves
- Stainless steel diffuser screens
- CycleLoc[®] demand control
- Control air line filter
- ETL listed (UL/CSA standards)
- LED din connector(s) all solenoid valves
- Two year dryer warranty (parts and labor)
- 120 VAC power (other options available consult factory)
- Power cord with basic controller
- Power din connector with advanced controller
- Power ON/OFF switch with advanced controller
- Steel base KTA1000 and larger

Options

- Custom filter packaging
- Ecotronic Energy Demand Control (KTA10 KTA800)
- All NEMA classifications
- Control air tubing stainless steel
- Low ambient package (-20°F to +40°F air temperature)
- Instrumentation
 - Locally mounted pressure and temperature gauges at inlet and outlet
- Pneumatic controls
- ASME B31.3 piping
- Corrosion allowance
- -100°F pressure dew point (See Parker Zander KTL literature)
- High pressure applications (See Parker Zander KTX literature)

Contact Factory for additional options, customization, and specifications

Worldwide Filtration Manufacturing Locations

North America

Compressed Air Treatment

Gas Separation & Filtration Division Airtek/Finite/domnick hunter/Zander Lancaster, NY 716 686 6400 www.parker.com/faf

Balston Haverhill, MA 978 858 0505 www.parker.com/balston

Engine Filtration

Racor Modesto, CA 209 521 7860 www.parker.com/racor

Holly Springs, MS 662 252 2656 www.parker.com/racor

Hydraulic Filtration

Hydraulic & Fuel Filtration Metamora, OH 419 644 4311 www.parker.com/hydraulicfilter

Laval, QC Canada 450 629 9594 www.parkerfarr.com

Velcon Colorado Springs, CO 719 531 5855 www.velcon.com

Process Filtration

domnick hunter Process Filtration SciLog Oxnard, CA 805 604 3400 www.parker.com/processfiltration

Water Purification

Village Marine, Sea Recovery, Horizon Reverse Osmosis Carson, CA 310 637 3400 www.parker.com/watermakers

Europe

Compressed Air Treatment

domnick hunter Filtration & Separation Gateshead, England +44 (0) 191 402 9000 www.parker.com/dhfns

Parker Gas Separations Etten-Leur, Netherlands +31 76 508 5300 www.parker.com/dhfns

Hiross Zander Essen, Germany +49 2054 9340 www.parker.com/hzfd

Padova, Italy +39 049 9712 111 www.parker.com/hzfd

Engine Filtration & Water Purification

Racor Dewsbury, England +44 (0) 1924 487 000 www.parker.com/rfde

Racor Research & Development

Stuttgart, Germany +49 (0)711 7071 290-10

Hydraulic Filtration

Hydraulic Filter Arnhem, Holland +31 26 3760376 www.parker.com/hfde

Urjala, Finland +358 20 753 2500

Condition Monitoring

Parker Kittiwake West Sussex, England

Process Filtration

+44 (0) 1903 731 470

www.kittiwake.com

domnick hunter Process Filtration Parker Twin Filter BV Birtley, England +44 (0) 191 410 5121 www.parker.com/processfiltration

Asia Pacific

Australia Castle Hill, Australia +61 2 9634 7777 www.parker.com/australia

China Shanghai, China +86 21 5031 2525 www.parker.com/china

India Chennai, India +91 22 4391 0700 www.parker.com/india

Parker Fowler Bangalore, India +91 80 2783 6794 www.johnfowlerindia.com

Japan Tokyo, Japan +81 45 870 1522 www.parker.com/japan

Korea Hwaseon-City +82 31 359 0852 www.parker.com/korea

Singapore Jurong Town, Singapore +65 6887 6300 www.parker.com/singapore

Thailand Bangkok, Thailand +66 2186 7000 www.parker.com/thailand

Latin America

Parker Comercio Ltda. Filtration Division Sao Paulo, Brazil +55 12 4009 3500 www.parker.com/br

Pan American Division Miami, FL 305 470 8800 www.parker.com/panam

Africa

Aeroport Kempton Park, South Africa +27 11 9610700 www.parker.com/africa

© 2016 Parker Hannifin Corporation. Product names are trademarks or registered trademarks of their respective companies.

Publication: Zander KTA Series Rev 000 NA 07/2016

Parker Hannifin Corporation **Gas Separation & Filtration Division** 4087 Walden Avenue Lancaster, NY 14086 phone 716 686 6400 www.parker.com/faf